Cyclic microwave synthesis and characterization of cadmium tungstate particles assisted by a solid-state metathetic reaction

Chang Sung Lim*, Kyoung Hun Kimb and Kwang Bo Shimc

aDepartment of Advanced Materials Science & Engineering, Hanseo University, Seosan 356-706, Korea
bKorea Institute of Ceramic Engineering and Technology, Seoul 153-801, Korea
cDivision of Advanced Materials Engineering, Hanyang University, Seoul 133-791, Korea

Cadmium tungstate (CdWO₄) particles synthesized using cyclic microwave irradiation assisted by a solid-state metathetic (SSM) reaction were well crystallized at 400-600 °C, showing a fine structure with a self-assembled rod-like morphology and a crystallographic orientation with sizes of 1-3 µm. The synthesized CdWO₄ particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The optical properties were investigated by photoluminescence emission and Raman spectroscopy.

Key words: CdWO₄, Cyclic microwave, Solid-state metathesis, Photoluminescence, Raman spectroscopy.

Introduction

Metal tungstates have attracted considerable attention for potential applications in photoluminescence, scintillator, photocatalyst and humidity sensors [1-3]. The physical, chemical and photochemical properties of metal tungstates are dependent on the manufacturing method. Several processes have been developed over the past decade to enhance the applications of metal tungstates prepared by a range of processes, such as co-precipitation [4, 5], a solvothermal method [5-8], spray pyrolysis [9], a reverse micelle system [10, 11], solution synthesis [12], a sol-gel method [13], a mechano-chemical method [14], a molten salt method [15, 16], a hydrothermal method [17-19], microwave-assisted synthesis [20-24] and a solid-state metathetic (SSM) reaction [25-27]. Wet chemical methods have disadvantages, such as complicated synthetic steps, use of expensive equipment, high synthetic temperatures and long sintering times.

Compared with the usual methods, microwave synthesis has the advantages of a very short reaction time, small particle size, narrow particle size distribution, and is a high purity method for preparing polycrystalline samples. Microwave heating is delivered to the surface of the material by radiant and/or convection heating, which is transferred to the bulk of the material via conduction. Microwave energy is delivered directly to the material through molecular interactions with an electromagnetic field. Heat can be generated through volumetric heating because microwaves can penetrate the material and supply energy [23, 24]. Therefore it is possible to achieve rapid and uniform heating of thick materials. Solid-state synthesis of materials by the metathetic route is a simple and cost-effective method that provides a high yield with easy scale up, and is emerging as a viable alternative approach for the synthesis of high-quality novel inorganic materials in short time periods.

Therefore, the precise nature of the optical properties and microwave metathetic synthesis of cadmium tungstate (CdWO₄) particles is required for a wide range of applications. In this study, CdWO₄ particles were synthesized using a SSM method with microwave irradiation. The characteristics of the SSM reaction of the CdWO₄ particles are discussed in detail based on the formation of a high lattice energy by-product of NaCl. The synthesized CdWO₄ particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were examined by photoluminescence (PL) emission and Raman spectroscopy.

Experimental

CdCl₂·2.5H₂O and Na₂WO₄·2H₂O of analytic reagent grade were used to prepare the CdWO₄ compound. Fig. 1 shows a flow chart for the cyclic microwave synthesis of CdWO₄ assisted by a metathetic reaction. The preparation of CdWO₄ was carried out by reacting well-ground mixtures of CdCl₂·2.5H₂O and Na₂WO₄·2H₂O at a molar ratio of 1:1. The sample mixtures were dried at 100 °C for 12 h, placed into crucibles and exposed to domestic microwaves (Samsung Electronics Corp. Korea) operating at a frequency of 2.45 GHz and a maximum output power of 1250 W for 40 minutes. The working cycle of the microwave oven was set between 60 s on and 30 s off. The samples were

*Corresponding author:
Tel : +82-41-660-1445
Fax: +82-41-660-1445
E-mail: cslim@hanseo.ac.kr
This image is a page from a scientific document discussing the synthesis and characterization of CdWO₄ particles. The text describes the experimental procedure, which includes treating the samples with ultrasonic radiation and washing them many times with distilled water and ethanol. The samples were then dried at 100°C in an oven. Heat-treatments at 400, 500, and 600°C for 3 hours were performed. Powder XRD (CuKα, Rigaku D/MAX 2200, Japan) and FTIR (Nicolet IR 200, Thermo Electron Corporation, USA) were used to identify the phase existing in the particles, and SEM (JSM-5600, JEOL, Japan) and TEM (JEM 2000-FX, 250 kV, Japan) were used to observe the microstructure and surface morphology. The results showed that the CdWO₄ particles could be prepared using this solid-state metathetic synthesis, and the strongest intensity peaks were observed at the (110), (111), and (130) planes. The PL spectra were recorded using a spectrophotometer (Perkin Elmer LS55, UK) at room temperature. Raman spectroscopy measurements were performed using a LabRam HR (Jobin-Yvon, France). The 514.5 nm line of an Ar-ion laser was used as the excitation source, with the power kept at 0.5 mW on the sample.

Results and Discussion

Fig. 2 shows XRD patterns of the cyclic microwave synthesized CdWO₄ particles assisted by the metathetic reaction after (a) heat-treatment at 600°C for 3 h and compared to the (b) data of JCPDS 14-676. All XRD peaks could be assigned to a tetragonal phase CdWO₄ with a monoclinic wolframite-type structure, which is in good agreement with the crystallographic data of CdWO₄ (JCPDS : 14-676). This means that the CdWO₄ can be prepared using this SSM reaction assisted by microwave irradiation. The formation of the CdWO₄ crystalline phases requires heat treatment at 600°C for 3 h. The CdWO₄ formed had a wolframite-type crystal structure with lattice parameters of a = 5.03 Å, b = 5.86 Å, and c = 5.07 Å and β = 91.47°. This suggests that solid-state metathetic synthesis is suitable for the growth of CdWO₄ crystallites and the development of the strongest intensity peaks at (110), (111), and (130) planes, which were the major peaks of the CdWO₄, with some preferred orientation.

Fig. 3 shows SEM images of the CdWO₄ particles after heat-treatment at (a) 400°C for 3 h, (b) 500°C for 3 h, (c) 600°C for 3 h and (d) a high magnification of (c). The SEM images after heat-treatment at 400°C for 3 h showed the microstructure of the CdWO₄ particles, and the high magnification image showed the surface morphology in more detail.
in Fig. 3(a) and 500 °C for 3 h in Fig. 3(b) show silkworm-like morphologies with sizes of 1-2 µm. The SEM images after heat-treatment at 600 °C for 3 h show a woven network structure in Fig. 3(c) and various rod-like morphologies with sizes of 1-3 µm in Fig. 3(d).

Fig. 4 shows a (a) TEM image after heat-treatment at 600 °C for 3 h and (b) a SAED of a various rod-like assembly, (c) a schematic illustrations of the self-assembled rod-like morphology and (d) various rod-like morphology of CdWO₄. The TEM image in Fig. 4(a) shows a self-assembled rod-like morphology and the SAED pattern in Fig. 4(b), which can be indexed to the [010] zone, shows the preferred growth direction of these rods. The CdWO₄ easily forms relatively thin structures due to its intrinsic (010) cleavage plane because of the chain structure of the [WO₄]⁶⁻ octahedra in the wolframate type structure. The self-assembled rod-like and various short rod-like morphologies of CdWO₄ are constructed with several submicrometre-rods attached in their arrangements in Fig. 4(c, d). It is noted that most of the assembled rods have similar widths. The reason why the rod-like morphology is formed in CdWO₄ is attributed to the crystallographic growth of the CdWO₄ particles which can be generated easily in the direction [100], while the assembled structures can be attached to the direction [001] as in Fig. 4(d). A similar self-assembled structure on the CdWO₄ shows a relatively thick nature along the [010] direction and self-assembles to an ordered structure in Fig. 4(c) and (d). A similar self-assembled structure in Fig. 4(c) and (d) are constructed with several submicrometre-sized particles at considerably lower temperatures than those usually employed for their synthesis. After the microwave metathetic reaction, the reactants need to be heated at temperatures above 900 °C for 12 h. Therefore, the microwave metathetic reaction and post-heating treatment are interdependently essential procedures to synthesize CdWO₄ at a lower temperature than that employed for solid state reactions. Wet chemical methods for the synthesis of tungstates require low temperatures [10-13]. However, the solution methods need complicated synthetic steps, the use of expensive equipment and produce a small amount of CdWO₄ products. Compared with the usual methods, microwave synthesis has the advantages of a very short reaction time, a small particle size, a narrow particle size distribution, and is a high purity method for preparing CdWO₄ particles. It is possible to achieve rapid and uniform heating of CdWO₄ by the solid-state synthesis of materials by the metathetic route which is a simple and cost-effective method that provides a high yield with easy scale up, and is emerging as a viable alternative approach for the synthesis of CdWO₄ particles in short time periods.

Metal tungstates with large bivalent cations (e.g., Ca, Ba, Pb, and Sr) tend to have a scheelite-type tetragonal structure, whereas small cationic radii (e.g., Zn, Fe, Co, Ni and Cd) favor the formation of a wolframate-type monoclinic structure. The main difference between the above two structures is that each W atom is surrounded by four O atoms in a scheelite-type structure, whereas the wolframate-type structure contains six O atoms surrounding each W atom [28, 29]. It is based on a distorted hexagonal close packing of O atoms with Cd and W atoms, each occupying one-fourth of the octahedral interstices. The presence of two non-equivalent oxygen atoms is responsible for the pairs of Cd-O and W-O bonds with different lengths. Therefore, both Cd and W atoms are surrounded by six oxygen atoms, forming distorted octahedral coordination.
Each chain of the CdO₆ octahedra is corner-linked, and the chains of WO₆ octahedra are edge-linked, which are also parallel to [001]. The CdO₆ and WO₆ octahedra consist of three pairs of cation-oxygen bonds with Cd and W atoms being displaced from the center of their octahedra by approximately 0.29 and 0.32 Å, respectively, along the [010] direction [30].

Fig. 5 shows FT-IR spectra at the wavenumber range of 480-4000 cm⁻¹ of the CdWO₄ particles after (a) the microwave metathetic reaction (CdWO₄-m) and (b) heat-treatment at 600 °C for 3 h (CdWO₄-m600). The bending and stretching vibrations of Cd-O (532 cm⁻¹), W-O (629, 691 cm⁻¹) and Cd-O-W (833, 878 cm⁻¹) were identified in the synthesized CdWO₄. The FT-IR spectra of the CdWO₄-m in Fig. 5(a) exhibit bands at 1620, 3445 cm⁻¹ (O-H stretching modes) at 1278 cm⁻¹ (CH₃). It is assumed that the samples prepared contain a significant amount of surface-adsorbed water and alcohol. Obviously, the bands at 1620, 3445, 1278 cm⁻¹ disappeared after heat-treatment at 600 °C for 3 h in Fig. 5(b).

Fig. 6 presents photoluminescence emission spectra of the CdWO₄ particles after heat-treatment at (a) 500 °C for 3 h and (b) 600 °C for 3 h exited by a 250 nm source at room temperature. The photoluminescence of metal tungstates has been discussed in the frame of molecular orbital models of the [WO₆]⁶⁻ group. It is generally assumed that the measured emission spectra of metal tungstates are mainly attributed to the charge-transfer transitions within the [WO₆]⁶⁻ complex [31-33]. With excitation at 250 nm, the CdWO₄ particles exhibit a broad PL emission in the green wavelength range of 460-470 nm, which agrees with the PL emission of a CdWO₄ single crystal at room temperature what has been reported which intrinsic luminescence at 470-480 nm [34, 35]. The photoluminescence intensity of energy-conversion materials depends strongly on the particle shape and distribution. Generally, for samples with a similar morphologies, a homogenized particle must be favorable to luminescent characteristics because of less contamination or fewer dead layers on the energy-conversion materials surface.

Fig. 7 shows Raman spectra of the CdWO₄ particle excited by the 514.5 nm line of an Ar-ion laser at 0.5 mW on the sample.
Cyclic microwave synthesis and characterization of cadmium tungstate particles assisted by a solid-state metathetic reaction

Conclusions

Cadmium tungstate (CdWO$_4$) particles synthesized using a cyclic microwave metathetic reaction were well crystallized at 400-600 °C. Silkworm-like morphologies were formed after heat-treatment at 400-500 °C for 3 h with sizes of 1-2 µm, while a self-assembled rod-like morphology with a preferred crystallographic orientation with sizes of 1-3 µm was formed after 600 °C for 3 h. A stretching vibration in FTIR was detected as a strong W-O stretch in the [WO$_6$]$^{6–}$ tetrahedra at 823 cm$^{-1}$. With excitation at 250 nm, the CdWO$_4$ particles exhibit a broad PL emission in the green wavelength range of 460-470 nm.

Acknowledgement

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0026911).

References